Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Acta Biotheor ; 70(4): 23, 2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1990668

ABSTRACT

The interplay between the virus, infected cells and immune responses to SARS-CoV-2 is still under debate. By extending the basic model of viral dynamics, we propose here a formal approach to describe neutralisation versus weak (or non-)neutralisation scenarios and compare them with the possible effects of antibody-dependent enhancement (ADE). The theoretical model is consistent with the data available in the literature; we show that both weakly neutralising antibodies and ADE can result in final viral clearance or disease progression, but that the immunodynamics are different in each case. As a significant proportion of the world's population is already naturally immune or vaccinated, we also discuss the implications for secondary infections after vaccination or in the presence of immune system dysfunctions.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunity, Humoral , SARS-CoV-2
2.
Front Immunol ; 13: 861050, 2022.
Article in English | MEDLINE | ID: covidwho-1785349

ABSTRACT

It has been reported that multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) including Alpha, Beta, Gamma, and Delta can reduce neutralization by antibodies, resulting in vaccine breakthrough infections. Virus-antiserum neutralization assays are typically performed to monitor potential vaccine breakthrough strains. However, experiment-based methods took several weeks whether newly emerging variants can break through current vaccines or therapeutic antibodies. To address this, we sought to establish a computational model to predict the antigenicity of SARS-CoV-2 variants by sequence alone. In this study, we firstly identified the relationship between the antigenic difference transformed from the amino acid sequence and the antigenic distance from the neutralization titers. Based on this correlation, we obtained a computational model for the receptor-binding domain (RBD) of the spike protein to predict the fold decrease in virus-antiserum neutralization titers with high accuracy (~0.79). Our predicted results were comparable to experimental neutralization titers of variants, including Alpha, Beta, Delta, Gamma, Epsilon, Iota, Kappa, and Lambda, as well as SARS-CoV. Here, we predicted the fold of decrease of Omicron as 17.4-fold less susceptible to neutralization. We visualized all 1,521 SARS-CoV-2 lineages to indicate variants including Mu, B.1.630, B.1.633, B.1.649, and C.1.2, which can induce vaccine breakthrough infections in addition to reported VOCs Beta, Gamma, Delta, and Omicron. Our study offers a quick approach to predict the antigenicity of SARS-CoV-2 variants as soon as they emerge. Furthermore, this approach can facilitate future vaccine updates to cover all major variants. An online version can be accessed at http://jdlab.online.


Subject(s)
Antigens, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antigens, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immune Sera , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Synthetic biology (Oxford, England) ; 6(1), 2021.
Article in English | EuropePMC | ID: covidwho-1688437

ABSTRACT

Assembly of minimal genomes revealed many genes encoding unknown functions. Three overlooked functional categories account for some of them. Cells are prone to make errors and age. As a first key function, discrimination between proper and changed entities is indispensable. Discrimination requires management of information, an authentic, yet , currency of reality. For example proteins age, sometimes very fast. The cell must identify, then get rid of old proteins without destroying young ones. Implementing discrimination in cells leads to the second set of functions, usually ignored. Being , information must nevertheless be embodied into material entities, with unavoidable idiosyncratic properties. This brings about novel unmet needs. Hence, the buildup of cells elicits specific but awkward material implementations, ‘kludges’ that become essential under particular settings, while difficult to identify. Finally, a third functional category characterizes the need for growth, with metabolic implementations allowing the cell to put together the growth of its cytoplasm, membranes, and genome, spanning different spatial dimensions. Solving this metabolic quandary, critical for engineering novel synthetic biology chassis, uncovered an unexpected role for CTP synthetase as the coordinator of nonhomothetic growth. Because a significant number of SynBio constructs aim at creating cell factories we expect that they will be attacked by viruses (it is not by chance that the function of the CRISPR system was identified in industrial settings). Substantiating the role of CTP, natural selection has dealt with this hurdle via synthesis of the antimetabolite 3′‐deoxy‐3′,4′‐didehydro‐CTP, recruited for antiviral immunity in all domains of life. Graphical Graphical

4.
Viruses ; 13(4)2021 03 29.
Article in English | MEDLINE | ID: covidwho-1159857

ABSTRACT

The Covid-19 pandemic has required nonpharmaceutical interventions, primarily physical distancing, personal hygiene and face mask use, to limit community transmission, irrespective of seasons. In fact, the seasonality attributes of this pandemic remain one of its biggest unknowns. Early studies based on past experience from respiratory diseases focused on temperature or humidity, with disappointing results. Our hypothesis that ultraviolet (UV) radiation levels might be a factor and a more appropriate parameter has emerged as an alternative to assess seasonality and exploit it for public health policies. Using geographical, socioeconomic and epidemiological criteria, we selected twelve North-equatorial-South countries with similar characteristics. We then obtained UV levels, mobility and Covid-19 daily incidence rates for nearly the entire 2020. Using machine learning, we demonstrated that UV radiation strongly associated with incidence rates, more so than mobility did, indicating that UV is a key seasonality indicator for Covid-19, irrespective of the initial conditions of the epidemic. Our findings can inform the implementation of public health emergency measures, partly based on seasons in the Northern and Southern Hemispheres, as the pandemic unfolds into 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/radiation effects , Humans , Incidence , Machine Learning , Pandemics , SARS-CoV-2/physiology , Seasons , Temperature , Ultraviolet Rays , Weather
5.
Environ Microbiol ; 23(5): 2339-2363, 2021 05.
Article in English | MEDLINE | ID: covidwho-1153385

ABSTRACT

The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.


Subject(s)
Biological Evolution , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Disease Transmission, Infectious/prevention & control , Genetic Variation , Host-Pathogen Interactions , Humans , SARS-CoV-2/physiology , Virus Replication
6.
Biology (Basel) ; 10(1)2020 Dec 26.
Article in English | MEDLINE | ID: covidwho-1028358

ABSTRACT

BACKGROUND: Starting late 2019, a novel coronavirus spread from the capital of the Hubei province in China to the rest of the country, then to most of the world. To anticipate future trends in the development of the pandemic, we explore here, based on public records of infected persons, how variation in the virus tropism could end up in different patterns, warranting a specific strategy to handle the epidemic. METHODS: We use a compartmental model to describe the evolution of an individual through several possible states: susceptible, infected, alternative infection, detected, and removed. We fit the parameters of the model to the existing data, taking into account significant quarantine changes where necessary. RESULTS: The model indicates that Wuhan quarantine measures were effective, but that alternative virus forms and a second propagation route are compatible with available data. For the Hong Kong, Singapore, and Shenzhen regions, the secondary route does not seem to be active. CONCLUSIONS: Hypotheses of an alternative infection tropism (the gut tropism) and a secondary propagation route are discussed using a model fitted by the available data. Corresponding prevention measures that take into account both routes should be implemented to the benefit of epidemic control.

7.
Biology ; 10(1):10, 2021.
Article in English | ScienceDirect | ID: covidwho-984249

ABSTRACT

Background: Starting late 2019, a novel coronavirus spread from the capital of the Hubei province in China to the rest of the country, then to most of the world. To anticipate future trends in the development of the pandemic, we explore here, based on public records of infected persons, how variation in the virus tropism could end up in different patterns, warranting a specific strategy to handle the epidemic. Methods: We use a compartmental model to describe the evolution of an individual through several possible states: susceptible, infected, alternative infection, detected, and removed. We fit the parameters of the model to the existing data, taking into account significant quarantine changes where necessary. Results: The model indicates that Wuhan quarantine measures were effective, but that alternative virus forms and a second propagation route are compatible with available data. For the Hong Kong, Singapore, and Shenzhen regions, the secondary route does not seem to be active. Conclusions: Hypotheses of an alternative infection tropism (the gut tropism) and a secondary propagation route are discussed using a model fitted by the available data. Corresponding prevention measures that take into account both routes should be implemented to the benefit of epidemic control.

8.
Genome Biol Evol ; 12(12): 2467-2485, 2020 12 06.
Article in English | MEDLINE | ID: covidwho-968552

ABSTRACT

In the context of the COVID-19 pandemic, we describe here the singular metabolic background that constrains enveloped RNA viruses to evolve toward likely attenuation in the long term, possibly after a step of increased pathogenicity. Cytidine triphosphate (CTP) is at the crossroad of the processes allowing SARS-CoV-2 to multiply, because CTP is in demand for four essential metabolic steps. It is a building block of the virus genome, it is required for synthesis of the cytosine-based liponucleotide precursors of the viral envelope, it is a critical building block of the host transfer RNAs synthesis and it is required for synthesis of dolichol-phosphate, a precursor of viral protein glycosylation. The CCA 3'-end of all the transfer RNAs required to translate the RNA genome and further transcripts into the proteins used to build active virus copies is not coded in the human genome. It must be synthesized de novo from CTP and ATP. Furthermore, intermediary metabolism is built on compulsory steps of synthesis and salvage of cytosine-based metabolites via uridine triphosphate that keep limiting CTP availability. As a consequence, accidental replication errors tend to replace cytosine by uracil in the genome, unless recombination events allow the sequence to return to its ancestral sequences. We document some of the consequences of this situation in the function of viral proteins. This unique metabolic setup allowed us to highlight and provide a raison d'être to viperin, an enzyme of innate antiviral immunity, which synthesizes 3'-deoxy-3',4'-didehydro-CTP as an extremely efficient antiviral nucleotide.


Subject(s)
COVID-19/transmission , Cytidine Triphosphate/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , COVID-19/epidemiology , COVID-19/virology , Cytosine/metabolism , Evolution, Molecular , Genome, Viral/genetics , Host-Pathogen Interactions , Humans , Pandemics , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Uracil/metabolism , Viral Envelope/metabolism , Virulence/genetics , Virus Replication/genetics
9.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Article in English | MEDLINE | ID: covidwho-908149

ABSTRACT

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Subject(s)
Betacoronavirus , Severe acute respiratory syndrome-related coronavirus , COVID-19 , Coronavirus Infections , Disease Outbreaks , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2
10.
Math Biosci ; 331: 108499, 2021 01.
Article in English | MEDLINE | ID: covidwho-899298

ABSTRACT

Motivated by historical and present clinical observations, we discuss the possible unfavorable evolution of the immunity (similar to documented antibody-dependent enhancement scenarios) after a first infection with COVID-19. More precisely we ask the question of how the epidemic outcomes are affected if the initial infection does not provide immunity but rather sensitization to future challenges. We first provide background comparison with the 2003 SARS epidemic. Then we use a compartmental epidemic model structured by immunity level that we fit to available data; using several scenarios of the fragilization dynamics, we derive quantitative insights into the additional expected numbers of severe cases and deaths.


Subject(s)
Antibody-Dependent Enhancement/immunology , COVID-19/epidemiology , COVID-19/immunology , Models, Biological , Reinfection/immunology , Humans
11.
C R Biol ; 343(2): 177-209, 2020 Oct 09.
Article in French | MEDLINE | ID: covidwho-892519

ABSTRACT

In the fight against the spread of COVID-19 the emphasis is on vaccination or on reactivating existing drugs used for other purposes. The tight links that necessarily exist between the virus as it multiplies and the metabolism of its host are systematically ignored. Here we show that the metabolism of all cells is coordinated by the availability of a core building block of the cell's genome, cytidine triphosphate (CTP). This metabolite is also the key to the synthesis of the viral envelope and to the translation of its genome into proteins. This unique role explains why evolution has led to the early emergence in animals of an antiviral immunity enzyme, viperin, that synthesizes a toxic analogue of CTP. The constraints arising from this dependency guide the evolution of the virus. With this in mind, we explored the real-time experiment taking place before our eyes using probabilistic modelling approaches to the molecular evolution of the virus. We have thus followed, almost on a daily basis, the evolution of the composition of the viral genome to link it to the progeny produced over time, particularly in the form of blooms that sparked a firework of viral mutations. Some of those certainly increase the propagation of the virus. This led us to make out the critical role in this evolution of several proteins of the virus, such as its nucleocapsid N, and more generally to begin to understand how the virus ties up the host metabolism to its own benefit. A way for the virus to escape CTP-dependent control in cells would be to infect cells that are not expected to grow, such as neurons. This may account for unexpected body sites of viral development in the present epidemic.


Dans la lutte contre la propagation de la COVID-19 l'accent est mis sur la vaccination, d'une part, et sur le redéploiement de traitements utilisés pour d'autres usages, d'autre part. Les liens qui existent nécessairement entre la multiplication du virus et le métabolisme de l'hôte sont systématiquement ignorés. Ici nous montrons que le métabolisme de toutes les cellules est coordonné par l'accessibilité d'un composant central du génome cellulaire, le triphosphate de cytidine (CTP). Ce métabolite est aussi la clé de la synthèse de l'enveloppe virale et de la traduction de son génome en protéines. Ce rôle unique explique pourquoi l'évolution a fait apparaître très tôt chez les animaux une activité enzymatique de l'immunité antivirale, la vipérine, destinée à synthétiser un analogue toxique du CTP. Les contraintes nées de cette dépendance orientent l'évolution du virus. Avec cette servitude à l'esprit, nous avons exploré l'expérience en vraie grandeur qui se déroule sous nos yeux au moyen d'approches de modélisation probabiliste de l'évolution moléculaire du virus. Nous avons ainsi suivi, presque au jour le jour, le devenir de la composition du génome viral pour la relier à la descendance produite au cours du temps, en particulier sous la forme d'efflorescences où apparaît un véritable feu d'artifice de mutations virales. Certaines d'entre elles augmentent certainement la propagation du virus. Cela nous conduit à proposer un rôle important dans cette évolution à certaines protéines du virus, comme celle de la nucléocapside N et plus généralement de commencer à comprendre comment le virus asservit à son bénéfice le métabolisme de l'hôte. L'un des moyens possibles pour le virus d'échapper au contrôle par le CTP serait d'infecter des cellules qui ne se multiplient pas, comme les neurones. Cela pourrait expliquer les sites de développement viral inattendus qu'on observe dans l'épidémie actuelle.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/physiology , Biological Evolution , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Evolution, Molecular , Humans , Pandemics , SARS-CoV-2
12.
Microb Biotechnol ; 13(4): 844-887, 2020 07.
Article in English | MEDLINE | ID: covidwho-260009

ABSTRACT

We have recently argued that, because microbes have pervasive - often vital - influences on our lives, and that therefore their roles must be taken into account in many of the decisions we face, society must become microbiology-literate, through the introduction of relevant microbiology topics in school curricula (Timmis et al. 2019. Environ Microbiol 21: 1513-1528). The current coronavirus pandemic is a stark example of why microbiology literacy is such a crucial enabler of informed policy decisions, particularly those involving preparedness of public-health systems for disease outbreaks and pandemics. However, a significant barrier to attaining widespread appreciation of microbial contributions to our well-being and that of the planet is the fact that microbes are seldom visible: most people are only peripherally aware of them, except when they fall ill with an infection. And it is disease, rather than all of the positive activities mediated by microbes, that colours public perception of 'germs' and endows them with their poor image. It is imperative to render microbes visible, to give them life and form for children (and adults), and to counter prevalent misconceptions, through exposure to imagination-capturing images of microbes and examples of their beneficial outputs, accompanied by a balanced narrative. This will engender automatic mental associations between everyday information inputs, as well as visual, olfactory and tactile experiences, on the one hand, and the responsible microbes/microbial communities, on the other hand. Such associations, in turn, will promote awareness of microbes and of the many positive and vital consequences of their actions, and facilitate and encourage incorporation of such consequences into relevant decision-making processes. While teaching microbiology topics in primary and secondary school is key to this objective, a strategic programme to expose children directly and personally to natural and managed microbial processes, and the results of their actions, through carefully planned class excursions to local venues, can be instrumental in bringing microbes to life for children and, collaterally, their families. In order to encourage the embedding of microbiology-centric class excursions in current curricula, we suggest and illustrate here some possibilities relating to the topics of food (a favourite pre-occupation of most children), agriculture (together with horticulture and aquaculture), health and medicine, the environment and biotechnology. And, although not all of the microbially relevant infrastructure will be within reach of schools, there is usually access to a market, local food store, wastewater treatment plant, farm, surface water body, etc., all of which can provide opportunities to explore microbiology in action. If children sometimes consider the present to be mundane, even boring, they are usually excited with both the past and the future so, where possible, visits to local museums (the past) and research institutions advancing knowledge frontiers (the future) are strongly recommended, as is a tapping into the natural enthusiasm of local researchers to leverage the educational value of excursions and virtual excursions. Children are also fascinated by the unknown, so, paradoxically, the invisibility of microbes makes them especially fascinating objects for visualization and exploration. In outlining some of the options for microbiology excursions, providing suggestions for discussion topics and considering their educational value, we strive to extend the vistas of current class excursions and to: (i) inspire teachers and school managers to incorporate more microbiology excursions into curricula; (ii) encourage microbiologists to support school excursions and generally get involved in bringing microbes to life for children; (iii) urge leaders of organizations (biopharma, food industries, universities, etc.) to give school outreach activities a more prominent place in their mission portfolios, and (iv) convey to policymakers the benefits of providing schools with funds, materials and flexibility for educational endeavours beyond the classroom.


Subject(s)
Amyloidosis , Prealbumin , Adult , Benzoxazoles , Child , Humans
13.
Environ Microbiol ; 22(6): 2001-2006, 2020 06.
Article in English | MEDLINE | ID: covidwho-187999

ABSTRACT

The origin of the SARS-CoV-2 virus remains enigmatic. It is likely to be a continuum resulting from inevitable mutations and recombination events. These genetic changes keep developing in the present epidemic. Mutations tending to deplete the genome in its cytosine content will progressively lead to attenuation as a consequence of Muller's ratchet, but this is counteracted by recombination when different mutants co-infect the same host, in particular, in clusters of infection. Monitoring as a function of time the genome sequences in closely related cases is critical to anticipate the future of SARS-CoV-2 and hence of COVID-19.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Base Sequence , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Evolution, Molecular , Genes, Viral/genetics , Humans , Mutation , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Recombination, Genetic , SARS-CoV-2 , Viral Vaccines/immunology
14.
Environ Microbiol ; 22(6): 1977-1985, 2020 06.
Article in English | MEDLINE | ID: covidwho-69906
SELECTION OF CITATIONS
SEARCH DETAIL